18.1 Two Variables, One Equality Constraint

Consider the problem of maximizing (or minimizing) a function f(x, y) when x
and y are restricted to satisfy an equation g(x, v) = ¢. In case we want to maximize
f(x,y), the problem is

max f(x.y) subject to g(x,y) =c¢ {18.2]
A~
Problem [18.2] can be given a geometric interpretation, as in Fig. 18.1.

IThe method is named after its discoverer, the French mathematician Joseph Louis Lagrange
(1736-1813). The Danish economist Harald Westergaard seems to have been the first who used it
in economics, in 1876. (See Thorkild Davidsen, “Westergaard, Edgeworth and the use of Lagrange
multipliers in economics,” Economic Journal 96 (1986): 808-811.)
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FIGURE 18.1

FIGURE 18.2



The graph of f is a surface like a bowl, whereas the equation g(x,y) =¢
represents a curve in the xv-plane. The curve K on the bowl is the one that lies
directly above the curve g(x, v) = c¢. (The latter curve is the projection of K
onto the xy-plane.) Maximizing f(x, y) without taking the constraint into account
gets us to the peak A in Fig. 18.1. The solution to problem [18.2], however, is at
B, which is the highest point on the curve K. If we think of the graph of f as
representing a mountain, and K as a mountain path, then we seek the highest point
on the path, which is B. Analytically, the problem is to find the coordinates of B.

In Fig. 18.2, we show some of the level curves for f, and also indicate the
constraint curve g(x, y) = c. Now A’ represents the point at which f(x. v) has its
unconstrained (free) maximum. The closer a level curve of f is to point A’, the
higher is the value of f along that level curve. We are seeking that point on the
constraint curve g(x, y) = ¢ where f has its highest value. [f we start at point P on
the constraint curve and move along that curve toward A’, we encounter level curves
with higher and higher values of f. Obviously, point O indicated in Fig. 18.2 18
not the pointon g(x, y) =cat which f has its highest value, because the constraint
curve passes through the level curve of f at that point. Therefore, we can proceed
along the constraint curve and attain higher values of f. However, when we reach
point B’, we cannot go any higher. It is intuitively clear that B’ is the point with the
property that the constraint curve touches (without intersecting) a level curve for
f. This observation implies that the slope of the tangent to the curve g(x.y) =¢
at (x, y) is equal to the slope of the tangent to the level curve of f at that point.

Recall from Section 16.3 that the slope of the level curve F(x.v) = c 18
given by dy/dx = —F{(x,y)/Fy(x, y). Thus, the condition that the slope of the
tangent to g(x,y) = ¢ is equal to the slope of a level curve for f(x.y) can be
expressed analytically as follows:*

—g|(x, y)/g5(x, y) = — filx. v/ falx.y)

ZDisregard for a moment points (x.y) at which one or both partials of f and g with respect to
v vanish. See Theorem 18.1 for a precise result.
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[18.3]

A corresponding argument for the problem of minimizing f(x,y) subject to
g(x, y) = c gives the same condition [18.3]. It follows that a necessary condition
for (x, y) to solve problem [18.2] (or the corresponding minimization problem) is

that (x, y) satisfies both [18.3] and g(x,y) = c. These give two equations for
determining the two unknowns x and y.
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18.2 The Lagrange Multiplier Method

Recall the constrained optimization problem in [18.2]. which is to maximize f(x, v)
subject to g(x, y) = ¢. The first-order condition [18.3] can be expressed in a way
that is easy both to remember and generalize. First. rearrange [18.3] to obtain

fite ¥y fileoy)

glev) ghle.v)

(]

It (xo.yo) solves problem [18.2]. then the left- and right-hand sides of [x] are
equal at (xo, vo). The common value A of these fractions is called a Lagrange
multiplier, and equation [x] can then be expressed as

fileoy) —xgi(x.v)=0. falx y) —agi(x.yv) =0 [18.4]
Now define the Lagrangean function £ by

Llx.y)= flx.v)—A(glx,y) —c) [18.5]

- - The partials of L(x, v) with respect to x and y are £|(x. ¥} = f/(x. ) —rg\(x, )
and L5(x,y) = fy(x.y) — Agh(x.v), respectively. Thus. Equation [18.4] is the



first-order condition expressing the requirement that the partials of L vanish. This
argument supports the following procedure:

The Lagrangean Method
To find the solutions of the problem
max (min) f(x,y) subjectto g(x.v) =c¢

proceed as follows:

1. Write down the Lagrangean function

Lx, ) = fx.¥) = A(glx, 1) —c)

where A is a constant.
2. Differentiate L with respect to x and y. and equate the partials to 0.

3. The two equations in 2 together with the constraint yield the following
three equations:

filx, yy=Aigix.»)
frlx, y) = igi(x, y)
glx,y)=c

4. Solve these three equations for the three unknowns x, y, and A.

This method will in general give us all pairs of numbers (x. v) that can possibly
solve the problem. As a bonus, we get the corresponding value of the Lagrange
multiplier A. We shall see shortly that A has a very interesting interpretation that
is useful in many economic optimization problems.’

Example 18.3
Use Lagrange’s method for the problem in Example 18.1.

Solution The Lagrangean is
Lix.y) =xy —A2x +y —m)
So the first-order conditions for the solution of the problem are
Li(x,y) =y—2x=0. Li(x,y)=x— X1 =0, 2x+y=m [%]

3Some prefer to consider the Lagrangean as a function of three variables, L(x.y,4). Then
dL/0r = —fg(x, y) — cl, so equating this partial to 0 yields the constraint g(x.v) = c. Later in
Section 18.8, when inequality constraints are being discussed, some dangers of this procedure will be
pointed out.

The first two equations imply that y = 24 and x = A. So y = 2x. Inserting
this into the constraint yields 2x + 2x = m. Therefore, x = m/4, y = m/2,
and A = x = m/4. This is the same solution for x and y as we found in
Example 18.1.





